
Beating the System:
Manipulating 16-Bit Resources: 2
by Dave Jewell

Firstly, an apology. A couple of
‘bugettes’ crept into last

month’s code. For those seeking
proof of your scribe’s fallibility,
look no further! In the RESFILE.PAS
source file, the destructor for
TResFile should have been de-
clared with the override specifier.
The fact that it wasn’t meant that it
never got called at all. Oops! Also,
in the main application file, the
code to clear the listboxes and de-
stroy the existing TResFile object
should only get executed if the call
to the Execute method of the open
dialog returned True. Oh well...

Don’t worry too much about
making the changes, because a
revised version of the source code
is included on this month’s disk –
I’m just trying to come clean, that’s
all!

You’ll remember that last time I
described how to programmati-
cally examine the resources in a
16-bit executable, extract a speci-
fied resource and write it to disk.
As I stated then, the problem with
this approach is that you don’t end
up with a valid file that can be used
by other applications. For exam-
ple, if you grab the resource data
for an icon, hope for the best and
merely stuff it into a file with the
.ICO extension, you don’t end up
with a valid file. This is because
icon files have a standard header
which precedes the raw icon data.
The same is true of bitmaps. In this
article, we’re going to look at how
to take the raw resource data and
package it in such a way as to end
up with a standard file.

Icon Madness
In his innocence, the Editor asked
me if I could include the code to
create kosher icon files in last
month’s article. In my innocence, I
had originally intended to do this,
but it turns out that there’s a lot
more to icons than meets the eye.

You may not realise this, but a sin-
gle .ICO file can potentially contain
several different icon images, and
each icon image is actually made
up of two distinct bitmaps! What’s
the reason for this complexity? It’s
all to do with the device inde-
pendent nature of Windows. Nowa-
days, almost everyone is using
super VGA display hardware, but
back in the early days, you could
have CGA and EGA displays, with
different aspect ratios and widely
differing display capabilities. By
having several different icon im-
ages inside a single ‘logical icon’,
the Windows USER library can
examine the capabilities of the
display hardware and select the
icon image which gives the closest
match, thereby producing the
best-looking image on the screen.

The reason that each icon is
made up of two distinct bitmaps is
simple. An icon consists of two
parts: a foreground image (which is
what you really think of as the icon)
and a background image which
acts as a mask. The mask is needed
to ‘punch a hole’ in the desktop,
into which the foreground image is
placed. It’s this mechanism which
allows an icon to have a non-
rectangular appearance with the
background showing through in
certain parts of the image. When
you use an icon editor, you’re not
actually aware that you’re creating
two separate bitmaps: the editor
simply analyses the parts of the
image that you’ve specified as be-
ing transparent and subtracts
those parts from the enclosing rec-
tangle to create the mask. The fore-
ground image is a colour bitmap
and the background mask is invari-
ably a monochrome bitmap, thus
saving space in the .ICO file.

Sounds reasonably simple? Read
on! What I’ve been talking about up
until now is the format of the .ICO
files, but things are more complex

when we look into the .EXE file it-
self. Suppose that you’ve got an
EXE file containing an icon with two
different display resolutions, say,
16 by 16 pixels and 32 by 32 pixels.
When you look at this file with
Borland Resource Workshop, you
only see a single ICON resource
which you can double click and
then select which image you want
to work with. This is illustrated in
Figure 1 where you can see the 32
by 32 pixel image being edited, with
the image list in the background.

However, if you now look at the
same EXE file with my little re-
source sniffer utility from last
month, you’ll see that two distinct
ICON resources show up in the EXE
file, along with a mysterious
GROUPICON resource. What’s going
on? The answer is that Resource
Workshop takes a high-level view
of resources, whereas my code
shows the actual, low-level, state of
affairs. It’s the GROUPICON resource
(not the ICON resource) which
corresponds to a logical icon
within a Windows executable. The
GROUPICON resource specifies how
many different resolution icon im-
ages are contained within the logi-
cal icon and provides pointers to
each of the individual ICON re-
sources. Effectively, the GROUPICON
resource acts as a ‘directory’ for
each logical icon contained within
the file. A little later, I’ll describe
the format of GROUPICON resources
and demonstrate how to use the
information contained therein to
‘stitch together’ a multi-part .ICO
file from one or more individual
icon resources.

.ICO File Format
Having briefly described where
we’re going, it’s now time to look at
the details. The format of .ICO files
consists of a surprising number of
parts, but it’s all relatively straight-
forward. Firstly, there’s a small

36 The Delphi Magazine Issue 22

data structure which I’ve called
TIconHeader. The first and second
fields of this record are always zero
and one respectively. In the general
case, the third field specifies the
number of icons contained within
the file. Most .ICO files only contain
one or two icons, but in principle
you could have many more:

TIconHeader = record
 AlwaysZero: Integer;
 AlwaysOne: Integer;
 NumIcons: Integer;
end;

The icon header is immediately fol-
lowed by an array of TIconDirEntry
records, one for each icon in the
file:

TIconDirEntry = record
 Width, Height, Colors: Byte;
 Reserved: Byte;
 dwReserved: LongInt;
 dwBytesInRes: LongInt;
 dwImageOffset: LongInt;
end;

As you’d expect, the Width, Height
and Colors fields of this data struc-
ture specify the dimensions and
the colour format of this icon im-
age. The next two fields are unused
and should be set to zero while the
dwBytesInRes field contains the to-
tal size of all the icon image data in
the file. That is, the size of the file
minus the size of the TIconHeader
structure, minus the size of how-
ever many TIconDirEntry records
happen to be contained in the file.
Finally, the dwImageOffset field is an

offset (relative to the start of the
file) to the image data for this
particular icon.

The image data for each icon
begins with a standard TBitmapIn-
foHeader record. This is defined by
Microsoft and shown below:

TBitmapInfoHeader = record
 biSize: Longint;
 biWidth: Longint;
 biHeight: Longint;
 biPlanes: Word;
 biBitCount: Word;
 biCompression: Longint;
 biSizeImage: Longint;
 biXPelsPerMeter: Longint;
 biYPelsPerMeter: Longint;
 biClrUsed: Longint;
 biClrImportant: Longint;
end;

The biSize field specifies the size of
this data structure ($28 in hex)
while the biHeight and biWidth
fields mirror the values given in the
TIconDirEntry record with one no-
table exception: a valid icon file
generally has the biHeight field set
to twice what you’d expect it to be.
This is conjecture on my part, but
I believe that Microsoft originally
intended to format icon files as a
double-height bitmap, with the
foreground image in the top half
and the mask in the lower half.
Early on, they realised that this
would be wasteful because the
mask only ever needs to be mono-
chrome, but the double-height
characteristic of biHeight is pre-
served, possibly because some
system software expects it to be so.

The TBitmapInfoHeader record is
immediately followed by an array
of TRGBQUAD fields (again, this re-
cord type is pre-defined by Borland
and Microsoft), one for each possi-
ble palette entry used by the icon.
For example, if this is a 16-bit icon,
there will be 16 TRGBQUADs following
the TBitmapInfoHeader record.

Next (we’re nearly there!) comes
the image data for the foreground
bitmap image and this is immedi-
ately followed by the image data for
the mask. To make this all a bit
clearer, let’s work through the size
calculations for a 32 x 32 pixel,
16-bit icon.

Because there’s only one icon in
the file, there will be only one 16
byte TIconDirEntry, so the total size
of this plus the TIconHeader record
will be 22 bytes. Now, a TBitmapIn-
foHeader record occupies 40 bytes
and since there are sixteen possi-
ble colour values, there will be six-
teen TRGBQUAD structures (each 4
bytes long), making a total (so far)
of 22+40+64 = 126 bytes. Because
the icon size is 32 x 32 pixels, a total
of 1024 pixels must be represented
in the foreground image data, but
since a 16-colour pixel can be rep-
resented by only four bits, we only
need half a byte for each stored
pixel. This gives 1024/2 = 512 bytes
for the foreground image. Finally,
the mask will also need to repre-
sent 1024 pixels, but because it is
monochrome, we only need 1 bit
per pixel (either on or off) meaning
that we can pack eight pixels into
each byte. The mask size will there-
fore be 1024/8 = 128 bytes. Thus,
the total size of the icon file will be
126 + 512 + 128 = 766 bytes. Sure
enough, we find that single icon
files containing just one 32 x 32
pixel, 16-colour image are 766
bytes in size.

Yellow Pages For Icons
Returning to the executable, just
how is a GROUPICON resource format-
ted? It’s actually quite similar to
the TIconDirEntry record that we’re
already looked at. When I wrote
this article, I blissfully assumed
that the format of GROUPICON re-
sources would be well docu-
mented. No such luck. After a
certain amount of disassembly and

➤ Figure 1:
Resource
Workshop
takes a high
level view
of resource
management;
the image list
in the top-left
corner actually
corresponds
to the
contents of a
GROUPICON
resource

June 1997 The Delphi Magazine 37

head-scratching, I came up with
the data structure shown below:

TGroupDirEntry = record
 Width, Height, Colors: Byte;
 Reserved: Byte;
 Planes: Integer;
 BitCount: Integer;
 ImageSize: LongInt;
 IconID: Word;
end;

A GROUPICON resource actually con-
sists of an array of these data struc-
tures, preceded by a TIconHeader as
already described. The NumIcons
field of the TIconHeader indicates
how many TGroupDirEntry struc-
tures follow. The ImageSize field
contains the number of bytes of
image data associated with each
icon. This is important informa-
tion, because it saves us having to
work it out as each individual icon
is written to disk. (Remember from
last month that, within an ex-
ecutable, the physical size of a re-
source will be rounded up to a
multiple of the resource alignment
factor. Consequently, we can’t just
take the physical resource size as
being the image size). Even more
important is the IconID which maps
a specific entry in the icon’s Yellow
Pages list onto a single ICON
resource.

Armed with the above, we’ve
now got all the information we
need to write standard icon files to
disk. For the sake of brevity, Listing
1 shows only the necessary addi-
tions to last month’s code: you’ll
find a complete code listing on the
disk as usual.

As you can see, WriteResource-
File now examines the type of re-
source being written and appends
a suitable file extension to the file
being created. It also calls one of
three different methods depending
on whether we’re writing a group
icon, a single icon resource, or a
bitmap. For now, let’s assume the
former case and take a look at the
WriteMultiIconFile code.

As you’ll have seen from our ear-
lier discussion, the TIconHeader
structure which sits at the front of
a GROUPICON resource is formatted
exactly as we want it to be for writ-
ing to the icon file. Thus, the first

thing we do is read the first six
bytes of the resource data and then
write them immediately to the
TFileStream. Once we’ve done that,
the count of the number of icons in
the file is readily available. The
code then loops once for each icon,
pulling the TGroupDirEntry records
out of the resource data and creat-
ing an equivalent TIconDirEntry
structure which is immediately
written to disk. What’s very impor-
tant here is the calculation of the
file offset for each icon’s image
data. The Offset variable is used
for this, initialising it to point imme-
diately after the last TIconDirEntry
in the file. Offset is then incre-
mented by the value of each
TGroupDirEntry’s ImageSize field
each time round the loop.

Once all the icon directory en-
tries have been written, the code
‘backs up’ to the first TGroupDirEn-
try structure in the resource data
and loops forward again, this time
calling WriteIndividualIcon to load
each icon’s image into memory and
write it to the file stream.

The code for WriteIndividual-
Icon needs to take the numeric ID
of an icon and map this onto an
index which can be passed to
GetResourceInfo. This isn’t an en-
tirely elegant piece of code, and
there’s a good argument here for
supplementing the interface of
TResFile by allowing you to directly
access a resource of specified type
and name/number. Incidentally,
the “component” icons of a GROUP-
ICON resource are always identified
by number rather than name, so
that the number can be stored in
the IconID field of the TGroupDir-
Entry (see last month’s article for

an explanation of name/number
identification in resources).

Having mapped the IconID pa-
rameter onto the correct icon, the
rest of the WriteIndividualIcon
code is trivial. It simply opens the
executable file and loads the re-
source data into memory using a
TFileStream as done elsewhere in
the program. The icon data is then
appended to the multi-part icon
file, taking care to write the number
of bytes specified in the TGroup-
DirEntry, rather than the physical
resource size. And that’s it! Once
all the individual icon images have
been written and the file closed,
you then end up with an industry
standard .ICO file.

This isn’t quite the end of the
story as far as icons go. Up to now,
I’ve only described how to extract
multi-part GROUPICON resources into
.ICO files. But, you might also want
to extract just a specific icon image
from a file, or you might find your-
self with a very old executable that
doesn’t contain any GROUPICONs,
only ICON resources.

For maximum flexibility, I’ve
therefore added code to extract
single ICON resource files as well.
This is handled by the WriteSin-
gleIconFile method. The code is
pretty straightforward with the ex-
ception of the call to GetImageSize
which tries to calculate an appro-
priate image size for the icon. The
code in this routine effectively
works through the sort of sizing
calculation that we’ve already dis-
cussed, but also tries to cater for a
special case that apparently ap-
plies to 16 x 16 pixel, 16 colour
icons. The rest of the code is
relatively simple.

➤ Figure 2:
Here’s the
structure of
an .ICO file;
although you
might not
expect it,
.ICO files are
actually more
complex than
.BMP files

38 The Delphi Magazine Issue 22

And Finally, Bitmaps
Funnily enough, creating .BMP files
is considerably simpler than the
preceding machinations involving
icons. This is mainly due to the fact
that a .BMP file contains exactly
one bitmap, while as we’ve seen an
icon file can contain several. The
only new data structure here is
TBitmapFileHeader, another of the
standard API record types which
have already been predefined by
Borland/Microsoft:

TBitmapFileHeader = record
 bfType: Word;
 bfSize: Longint;
 bfReserved1: Word;
 bfReserved2: Word;
 bfOffBits: Longint;
end;

The first field, bfType, must be set
to $4D42 which identifies the file as
a bitmap. The next field, bfSize,
must be equal to the total size of
the file (irrespective of the image
size of the bitmap itself) and is
used as a further check that the file

is valid. The next two fields are
reserved and should be set to zero.
Lastly, the bfOffBits field is an off-
set (relative to the top of the file)
which points to the actual image
data for the bitmap. Within the
.BMP file, the TBitmapFileHeader
data structure is immediately
followed by a TBitmapInfoHeader, an
array of TRGBQuads, and the image
data itself: this is all just as for icon
files, except that, since this is a
straight bitmap, there is no mono-
chrome mask following the main
image.

function GetIconImageSize(ImageData: PByte): LongInt;
 var bm: TBitmapInfoHeader;
begin
 Result := 0;
 if ImageData^ = sizeof (bm) then begin
 bm := PBitmapInfoHeader (ImageData)^;
 bm.biHeight := bm.biHeight div 2;
 Result := sizeof (bm);
 Inc (Result, sizeof (TRGBQuad) *
 LongInt(1 shl bm.biBitCount));
 { Allocate another 1 bit/pixel for mask }
 Inc (bm.biBitCount);
 { Hack: Older 16*16, 16-color icons use 2 bits/pixel for mask! }
 if (bm.biHeight = 16) and (bm.biWidth = 16) and
 (bm.biBitCount = 5) then Inc (bm.biBitCount);
 Inc(Result, ((bm.biWidth * bm.biHeight + 7) div 8) *
 bm.biBitCount);
 end;
end;
procedure TForm1.WriteIndividualIcon(fs: TFileStream;
 IconID, ImageSize: Integer);
var
 Info: TResInfo;
 ResData: PByte;
 IconList: TStringList;
 IconStream: TFileStream;
begin
 IconList := rf.GetResList (’ICON’);
 IconID := IconList.IndexOf (’#’ + IntToStr (IconID));
 rf.GetResourceInfo (’ICON’, IconID, Info);
 GetMem (ResData, Info.rLength);
 try
 IconStream :=
 TFileStream.Create(OpenDialog.FileName, fmOpenRead);
 try
 IconStream.Position := Info.rOffset;
 IconStream.Read (ResData^, Info.rLength);
 finally
 IconStream.Free;
 end;
 fs.Write (ResData^, ImageSize);
 finally
 FreeMem (ResData, Info.rLength);
 end;
end;
procedure TForm1.WriteMultiIconFile(fs: TFileStream;
 ImageData: PByte; Len: Word);
var
 Idx: Integer;
 DirStart: PByte;
 Hdr: TIconHeader;
 Offset: LongInt;
 Dir: TIconDirEntry;
 GroupDir: TGroupDirEntry;
begin
 { Get the file header and write it now }
 Move (ImageData^, Hdr, sizeof (Hdr));
 fs.Write (Hdr, sizeof (Hdr));
 Inc (ImageData, sizeof (Hdr));
 { Save current position and calculate initial image offset}
 DirStart := ImageData;
 Offset :=
 sizeof(Hdr)+(Hdr.NumIcons * sizeof(TIconDirEntry));
 { Write all the TIconDirEntry entries to disk }
 for Idx := 0 to Hdr.NumIcons - 1 do begin
 Move (ImageData^, GroupDir, sizeof (GroupDir));
 { Build a TIconDirEntry for this icon }
 Dir.Width := GroupDir.Width;
 Dir.Height := GroupDir.Height;
 Dir.Colors := GroupDir.Colors;
 Dir.Reserved := 0;
 Dir.dwReserved := 0;
 Dir.dwBytesInRes := GroupDir.ImageSize;
 Dir.dwImageOffset := Offset;

 fs.Write (Dir, sizeof (Dir));
 Inc (ImageData, sizeof (GroupDir));
 Inc (Offset, GroupDir.ImageSize);
 end;
 { Now loop again, writing the image data for each icon }
 ImageData := DirStart;
 for Idx := 0 to Hdr.NumIcons - 1 do begin
 Move (ImageData^, GroupDir, sizeof (GroupDir));
 WriteIndividualIcon(fs, GroupDir.IconID,
 GroupDir.ImageSize);
 Inc (ImageData, sizeof (GroupDir));
 end;
end;
procedure TForm1.WriteSingleIconFile (fs: TFileStream;
 ImageData: PByte; Len: Word);
var
 ImageSize: LongInt;
 bm: TBitmapInfoHeader;
 Hdr: TIconHeader;
 Dir: TIconDirEntry;
begin
 bm := PBitmapInfoHeader (ImageData)^;
 ImageSize := GetIconImageSize (ImageData);
 with Hdr do begin { Firstly, write file header }
 AlwaysZero := 0;
 Hdr.AlwaysOne := 1;
 Hdr.NumIcons := 1;
 fs.Write (Hdr, sizeof (Hdr));
 end;
 with Dir do begin { Next, write icon directory entry }
 Width := bm.biWidth;
 Height := bm.biHeight div 2;
 Colors := 1 shl bm.biBitCount;
 Reserved := 0;
 dwReserved := 0;
 dwBytesInRes := ImageSize;
 dwImageOffset := sizeof (Hdr) + sizeof (Dir);
 fs.Write (Dir, sizeof (Dir));
 end;
 { Finally, write the data itself }
 fs.Write (ImageData^, ImageSize);
end;
procedure TForm1.WriteResourceFile (const ResName, TypName:
 String; Info: TResInfo; ResData: Pointer);
var
 fName: String;
 Ext: String [5];
 NumIcons: Integer;
 fs: TFileStream;
begin
 fName := ExtractFilePath (Application.ExeName) + ResName;
 if (TypName = ’ICON’) or (TypName = ’GROUPICON’) then
 Ext := ’.ICO’
 else if (TypName = ’BITMAP’) then
 Ext := ’.BMP’
 else
 Ext := ’.BIN’;
 fName := fName + Ext;
 fs := TFileStream.Create (fName, fmCreate);
 try
 if TypName = ’ICON’ then
 WriteSingleIconFile (fs, ResData, Info.rLength)
 else if TypName = ’GROUPICON’ then
 WriteMultiIconFile (fs, ResData, Info.rLength)
 else if TypName = ’BITMAP’ then
 WriteBitmapFile (fs, ResData, Info.rLength)
 else
 fs.Write(ResData^, Info.rLength);
 MessageDlg(’Resource has been written to ’ + fName,
 mtInformation, [mbok], 0);
 finally
 fs.Free;
 end;
end;

➤ Listing 1

June 1997 The Delphi Magazine 39

The complete code to WriteBit-
mapFile is shown in Listing 2. You’ll
notice that rather than trying to
calculate the exact size of the im-
age data, I ‘cheat’ and just use the
resource length. This adds a few
bytes to the end of the bitmap file
but, in my experience, I’ve found it
safer to do this than to precisely
calculate the image size for a wide
variety of different resolutions and
colour depths.

Conclusions
In last month’s column I showed
you how to programmatically ex-
amine the resources contained
within a 16-bit executable file (EXE
or DLL) while this month I’ve dem-
onstrated how to convert some of
those resource types back into in-
dustry standard bitmap and icon
files. Using the information sup-
plied here, you could have a crack
at writing your own icon editor
application (naturally, I’ll expect a
share in the profits!), or maybe
come up with a utility to prowl your
hard disk for executables, extract-
ing their resources into a directory

for later browsing. Using the code
I’ve given you, you could even write
a program to alter icons ‘in-place’
within an existing executable, pro-
vided, of course, that the new icon
resource wasn’t larger than what’s
already there. The possibilities are
endless...

What I haven’t done is describe
how to do the same sort of thing
with 32-bit executables. Although I
mentioned this last month, I later
remembered that Borland have al-
ready provided the code to do this
in the shape of their RESXPLOR
demo program that comes with
Delphi 2 and Delphi 3. If you wanted

to, you could take my code and
amalgamate with Borland’s, to
create a unit which transparently
handles resources across both 16-
bit and 32-bit executables.

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is the author of Instant Delphi
Programming published by Wrox
Press. You can contact Dave as
DaveJewell@msn.com, DSJewell@
aol.com or even DaveJewell@
compuserve.com

procedure TForm1.WriteBitmapFile (fs: TFileStream; ImageData: PByte; Len: Word);
var Hdr: TBitmapFileHeader;
 pbm: PBitmapInfoHeader absolute ImageData;
begin
 { Initialise and write the file header }
 Hdr.bfType := $4D42;
 Hdr.bfSize := sizeof (Hdr) + Len;
 Hdr.bfReserved1 := 0;
 Hdr.bfReserved2 := 0;
 Hdr.bfOffbits := sizeof (Hdr) + sizeof (TBitmapInfoHeader) +
 (sizeof(TRGBQuad) * LongInt (1 shl pbm^.biBitCount));
 fs.Write (Hdr, sizeof (Hdr));
 { Then write the data }
 pbm^.biClrImportant := LongInt (1 shl pbm^.biBitCount);
 fs.Write (ImageData^, Len);
end;

➤ Listing 2

40 The Delphi Magazine Issue 22

	Icon Madness
	.ICO File Format
	Yellow Pages For Icons
	And Finally, Bitmaps
	Conclusions

